
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 06: Logical Database Design

About this topic

• In this topic we continue our coverage of the database design
process by looking at how we can convert an ERD produced in
the conceptual design stage to a set of normalised tables that
supports the organisation's business processing requirements.
You have already covered the relational model in some depth,
and the conversion from an ERD follows some simple rules to
ensure you achieve a good design.

Topic learning outcomes

After completing this topic you should be able to:

• Describe the activities in logical database design

• Convert an ERD to a relational schema in 3NF

• Validate a relational schema against the business transactions it is required to support

• Identify and document all integrity constraints for the logical model: required data,
attribute domain constraints, entity integrity, referential integrity and enterprise
constraints

• Define appropriate referential actions (‘foreign key rules’) to ensure that referential
integrity is maintained when the database is updated, inserted or deleted

• Document the logical database design in a data dictionary

Resources for this topic

READING

• Text, Chapter 6: Transforming data models into database
designs

• Skim the section on Data Types for now (we will come back to
it later)

• You can also skim the section on ‘Representing Ternary and
Higher Order Relationships’. And just try to get the basics
from ‘Designing for Minimum Cardinality’

The first four labs provided you with a lot of practice in creating and querying Oracle tables, and in the previous lab you
used Visio to create entity-relationship models. This lab is designed to help you understand how the two are connected,
through the database design process that moves from a conceptual model (the ERD) to a set of normalised relations that
can be implemented in a DBMS.

LAB 6 – CONVERTING AN ENTITY-
RELATIONSHIP MODEL TO TABLES

Topic outline

Where logical design fits into database design

Convert ERD to tables

Integrity constraints

Confirm logical design

Document the logical design in the data dictionary

Topic 06: Part 01 - Where logical design fits into database design

Database Design

Process of creating a design for a database that will support the
enterprise’s mission statement and mission objectives for the required
database system

Three phases of database design:

- Conceptual database design

- Logical database design

- Physical database design

Reminder (topic 5)

Reminder (topic 5)

Logical database design

• Create a model of the data based on a particular data model (EG- Relational model
for this lecture/course). The DBMS (Oracle/MYSQL) and other physical constraints
are not factors at this phase

• So once we have our conceptual data model from previous phase we refine and map
it to our logical data model

• Logical database design produces a relational schema and associated documentation,
which can be converted to a physical design in the chosen DBMS and eventually
implemented

- What advantages are there in separating the conceptual design from the logical
design process?

- We are designing the data in the most appropriate way. Provides freedom to
change course from not appropriate data model (relational model) to a more
appropriate data model

- Bad logical database design results in bad physical database design, and generally
results in poor database performance. EG queries are slow, might not be able to
get data we need due to poor design

http://www.sql-server-performance.com/database_design.asp

Why bother?

• “Bad logical database design results in bad physical database
design, and generally results in poor database performance.
So, if it is your responsibility to design a database from scratch, be
sure you take the necessary time and effort to get the logical
database design right. Once the logical design is right, then you also
need to take the time to get the physical design right.

• Both the logical and physical design must be right before you can
expect to get good performance out of your database. If the logical
design is not right before you begin the development of your
application, it is too late after the application has been implemented
to fix it. No amount of fast, expensive hardware can fix the poor
performance caused by poor logical database design…”

Logical design for the relational
model

• We will assume that we have decided to implement our design
using the relational model:
- The vast majority of new databases are implemented in DBMS based on

the RM

- You are already familiar with the RM

• When we convert an ERD to a logical relational schema, we
must represent all of the features of the ERD in tables
(relations)

• We must also ensure that the business requirements we began
to capture in the conceptual modelling stage continue to be
represented in the logical design

A logical database design
methodology Activities

1. Represent entities as tables

2. Represent relationships using foreign keys

3. Validate model using normalisation

4. Validate model against user transactions

5. Define and check integrity constraints

6. Review logical model with users

7. Merge local models into a global model

8. Check for future growth

9. Document the logical design

14
Adapted from Connolly & Begg

Take-aways…

• Logical database design is the second step in the database
design process

• It involves constructing a model of the data used in an
enterprise based on a specific data model (e.g. relational), but
independent of a particular DBMS and other physical
considerations

• The outcome of the logical design process is a relational
schema and associated documentation that can then be
converted to a physical design in the chosen DBMS and
eventually implemented

Topic 06: Part 02 - Convert ERD to tables

Convert ERD to tables

• Represent entities as tables

• Represent relationships using foreign keys

• Subtypes and Supertypes

• Verify using normalisation (3NF)

Represent entities as tables

Create a table for each entity

• Create a table that includes all the attributes of the entity

• The name of the entity becomes the name of the table

• The name of the attributes become the names of the columns

• The key attribute(s) of the entity becomes the primary key of the table

• If necessary, normalise the table further to 3NF

STUDENT (StudentNo, DOB, FamilyName, GivenName)

Multi-valued attributes

• If you find your ERD still has
multi-valued attributes,
correct them now

• Often the solution is to create
a new entity in a 1:M
relationship

STUDENT_EMAIL (StudentNo, Email, EmailType)

Representing 1:N (1 To Many) relationships

Representing 1:N (1 to
Many)relationships

• Represent each entity as
a table

• Include the primary
key of the 1-side
(parent) table as
foreign key in the N-
side (child) table

STAFF(StaffNo, Name, Position,

…)

PROPERTYFORRENT (PropertyNo,

Address, Type, Rooms,…)

STAFF (StaffNo, Name, Position, …)

PROPERTYFORRENT (PropertyNo,

Address, Type, Rooms, …, StaffNo)

Staff Property For Rent

The entities:

Become the relations:

1:N relationships with ID-
dependent entities

• In a 1:N relationship
involving an ID-dependent
entity with a composite key,
the foreign key attribute is
already in the child table, as
it is part of the PK

GRADUATE (GraduateID, FirstName, LastName, ….)

EMPLOYMENT (EmploymentID, GraduateID, Company,
JobTitle, …)

1:N recursive relationships

• Can put the foreign key in the same table, in a different role

• In this example any SupervisorID (FK) is found as Employee ID
(PK) in another record

EMPLOYEE (EmployeeID, Name, … SupervisorID)

1:N recursive relationships

• Can also create a new table for the relationship, consisting of
the PK and FK attributes

• The PK of SUPERVISION is EmployeeID, SupervisorID

• And EmployeeID and SupervisorID are each separate FKs to the
EMPLOYEE table

SUPERVISION (EmployeeID, SupervisorID)

Creating another table to represent a
1:N relationship

It’s also possible to create a third table to represent a 1:N
relationship. This could be a good idea if:

• There is a possibility that the business rules may change so that the
relationship becomes M:N in the future

• If the N side has optional participation – this may result in a table with
many nulls in the FK field (e.g. if a property might not be managed by a
member of staff)

PROPERTY (PropertyNo, Address, Rooms, …)
STAFF (StaffNo, Name, …)
MANAGES (PropertyNo, StaffNo)

Representing 1:1 relationships

Representing 1:1 Relationships

• Unlike 1:N relationships, there is a choice of where the FK will
be placed

• This choice will depend largely on the nature of the
relationship:

• Mandatory on both sides of the relationship?

• Mandatory on one side only of the relationship?

• Optional on both sides of the relationship?

Mandatory on both sides of the
relationship

• In this case, we may be able

to combine the entities into

a single relation

- In the example, IF each client

must have one and only one

address, then we would put the

address attributes in the

CLIENT relation

Client Client Address

CLIENT(ClientNo, Name, Tel …)

CLIENTADDRESS (Street, Suburb,

City, …)

The entities:

Become the single relation:

CLIENT(ClientNo, Name, Tel,

Street, Suburb, City …)

Mandatory on one side only of the
relationship

• In this case, we would put the
FK in the relation that has the
optional participation

• In this way, we remove the
nulls that would result if we
put the FK on the mandatory
side

Staff Next-of-Kin

STAFF(StaffNo, Name, Position

…)

NEXT-OF-KIN (Name, Address,

Telephone …)

The entities:

Become the relations:

STAFF(StaffNo, Name, Position

…)

NEXT-OF-KIN (Name, Address,

Telephone, StaffNo …)

Optional on both sides of the
relationship

- In this case, the positioning of
the FK is arbitrary
- As a rule of thumb, it would be

placed on the side of the
relationship where it would result in
fewer nulls

- In the example, we have chosen to
put the FK in the CAR relation as
the majority of cars are used by
staff, but only a small number of
staff will use a car

Staff Car

STAFF(StaffNo, Name, Position …)

CAR (Registration, …)

The entities:

Become the relations:

STAFF(StaffNo, Name, Position

…)

CAR (Registration, StaffNo, …)

One-to-one recursive relationships

- For a 1:1 recursive

relationship, follow the same

guidelines as for a 1:1

relationship

- e.g. mandatory participation
on both sides, represent the
recursive relationship as a single
relation with two copies of the
primary key (one renamed)

Staff

Has partner

STAFF (StaffNo, Name, Position …, PartnerNo)

Becomes the relation:

Representing M:N relationships

M:N relationships

A M:N relationship in an ERD
cannot be represented directly as
a M:N relationship in the
relational model

Instead, replace it with two 1:M
relationships:

Create a relation to represent the
relationship and include any
attributes that are part of the
relationship

Property For Rent ClientViewing

Property For Rent Client

PFR(PropertyNo, Address, Type …)

CLIENT (ClientNo, Name, …)

The entities:

Become the relations:

PFR(PropertyNo, Address, Type …)

CLIENT (ClientNo, Name, …)

VIEWING (ClientNo,PropertyNo,

Date, Comments)

M:N relationships

• It is good practice to ensure all M:N relationships are converted
to pairs of 1:N relationships in the ERD, BEFORE commencing
logical design

• This often reveals additional attributes or relationships
belonging to the associative (intersection) entity

Recursive M:N relationships

Treat as other M:N relationships
by creating an intersection entity

The primary keys of the
intersection entity/table will
need to be named to indicate
their roles

UNIT (UnitCode, UnitTitle, …)

PREREQUISITE (UnitCode, PrereqUnitCode)

Ternary (and higher) relationships

A ternary relationship is a

relationship involving three

entities

• Should already have been

resolved into pairs of 1:M

relationships and treated as

per earlier discussion of M:N

relationships

Employee Product

Customer

Employee Product

Customer

Sale

SALE (Employee, Customer, Product, Date)

Take-aways…

All features of the ERD must be represented in a
relational schema:

• Entities become tables, and attributes of the entity become
attributes of the table

• Relationships between entities are represented by foreign
keys in tables

• There are rules and guidelines about how to convert 1:N, 1:1
and M:N relationships to tables with FKs

Representing subtypes and supertypes

Subtypes and supertypes - reminder

• We can model generalisation/specialisation hierarchies with
subtypes and supertypes

• e.g. STUDENTS may be Undergraduate or Postgraduate

Constraints on subtypes include:

• Mandatory/optional – every member of the supertype MUST
be one of the subtypes, or may not be

• Disjoint/overlapping – an entity is one or other of the
subtypes, but can’t be both (or can be)

Subtypes and supertypes -
diagramming

• Visio 2010 ‘category’ symbol

41

This shows that the subtypes are disjoint (the ‘d’) and that they are
mandatory (the double line)

Subtypes and supertypes -
diagramming

• As the ‘category’ symbol has been discontinued in later
versions of Visio, you could use the UML symbol instead and
write the constraint information beside it

42

This shows that the
subtypes are disjoint
(the ‘or’) and that they
are mandatory

Primary keys and subtypes

• Normally the primary key
of the supertype and the
key of the subtype are the
same domain, although
they may have different
names

• The supertype primary
key is included as foreign
key in the subtype table

Representing subtypes as tables

There are various ways in which we can represent subtypes, for
example:

• A single table including all subtype and supertype attributes

• A table for the supertype and a table for each subtype

• A table for each subtype, each including the shared attributes
from the supertype

• There are no hard and fast rules that apply in every situation, but we
can distinguish some general guidelines (next)

Representing subtypes as tables

• The nature of the subtype-supertype relationship and its
context in the data model will together determine the most
appropriate option

• Generally: if it’s possible to be in more than one subtype
(overlapping), a single table is more appropriate, while
separate tables are more appropriate for disjoint (exclusive)
subtypes

• We also need to consider whether it is mandatory to belong to
a subtype or optional

• Other features such as the number of shared vs distinct
attributes and relationships with other entities also play a part

Some guidelines based on
participation/disjointness

• Representing
Subclasses in Tables
(from Connolly & Begg,
2005)

Representing subtypes: option 1

Mandatory, overlapping (non-disjoint)

Create a single relation including all subtype and supertype attributes, plus an
attribute(s) to identify the subtype

EMPLOYEE (SSN, Name, Address, DOB,
SecretaryFlag, TypingSpeed,
TechnicianFlag, Grade,
EngineerFlag, Qualification)

Representing subtypes: option 2

Optional, overlapping

Create a relation for the supertype, and a single table for all subtypes including
an attribute(s) to identify the subtype

(could also implement in a single table)

EMPLOYEE (SSN, Name, Address, DOB)

EMPLOYEEDETAILS (SSN,
SecretaryFlag, TypingSpeed,
TechnicianFlag, Grade,
EngineerFlag, Qualification)

Representing subtypes: option 3

Mandatory, disjoint

Create separate relations for each subtype containing the complete set of
subtype attributes:

SECRETARY (SSN, Name, Address, DOB, TypingSpeed)
TECHNICIAN (SSN, Name, Address, DOB, Grade)
ENGINEER (SSN, Name, Address, DOB, Qualification)

Representing subtypes: option 4

Optional, disjoint

Create one relation for the supertype entity containing the shared attributes and
an attribute to identify the subtype, and a separate relation for each subtype
containing the subtype attributes:

EMPLOYEE (SSN, Name, Address, DOB,
JobType)
SECRETARY (SSN, TypingSpeed)
TECHNICIAN (SSN, Grade)
ENGINEER (SSN, Qualification)

More examples

(from Connolly &
Begg, 2005)

Take-aways…

• Subtypes and supertypes can be converted to tables in a
number of ways, depending on the business requirements of
the system

• Generally: if it’s possible to be in more than one subtype
(overlapping), a single table is more appropriate, while
separate tables are more appropriate for disjoint (exclusive)
subtypes

• We also need to consider whether it is mandatory to belong to
a subtype or optional

• Other features such as the number of shared vs distinct
attributes and relationships with other entities also play a part

Validate model using normalisation

Validate model using normalisation {reworded]

Recall from Topic 4 that normalisation is the process of grouping attributes together
because there is a logical relationship between them

• Look at conceptual data model (ERD) and verify the relations currently in 3NF are
appropriate .

• Look at the schema for relations not in 3NF. Any relations not in 3NF we must
correct them and update the ERD or we understand why those relations are not
in 3NF and have a reason for it

• A normalised schema should resist having modification anomalies

- 1NF: Removes repeating groups

- 2NF: Removes partial functional dependencies

- 3NF: Removes transitive functional dependencies

Validate model against user transactions

Validate model against user
transactions

Verify whether the final database supports all users requested
transaction.

• At all stages the database will be validated against the transaction
since the transaction and database are designed in parallel

• If any problems are identified the ERD has to be amended, and the
logical design rebuilt from the amended ERD

Identify any errors that arose when converting conceptual design to
relational schema

Example:

How would you validate the following user
transaction on this ERD? Is the transaction
possible?

Produce a report listing the details of
properties (including names of owner and
responsible staff member) for rent at the
Perth branch

Example:

• Starting from BRANCH, we can retrieve all the
PROPERTIES FOR RENT it manages (there may be many).

• From each of those PFR, we can find one OWNER, and
one STAFF member (or none, if it doesn’t have one)

Produce a report listing the
details of properties (including
names of owner and
responsible staff member) for
rent at the Perth branch

So yes, this transaction
is possible

Example:

STAFF (StaffID, …)

BRANCH (BranchID, …)

OWNER (OwnerID, …)

PFR (PropertyID, StaffID, BranchID, OwnerID, …)

• We can join on PK–FK to get the information for a
particular Property

Produce a report listing the
details of properties (including
names of owner and
responsible staff member) for
rent at the Perth branch

So yes, this transaction
is possible

Take-aways…

It’s important to check that the logical schema supports the transactions required of the
database, before going any further with the design

This can be done in the ERD, by tracing the path of the required transactions

Or consider whether it is possible to construct the equivalent SQL (or relational algebra) query
from the schema

If any of the transactions aren’t possible, check the original design

Also check for errors in the mapping to the logical schema – did you convert the ERD correctly?

Topic 06: Part 03 - Integrity Constraints

Domain constraints (including Required)

Entity integrity constraints

Referential integrity constraints

Enterprise constraints

Cardinality

Define and check integrity constraints

Integrity refers to the validity and consistency of the stored data

Integrity is expressed in terms of constraints, which are consistency rules that the database is not
permitted to violate

In other words, in designing the database, we need to ensure that it correctly represents the
system modelled, and remains consistent when data is added or deleted

In the logical design stage we need to ensure ALL constraints are documented

We will decide HOW to implement them later

Integrity constraints - reminder from
Topic 2 …

The relational database model has a number of constraints that
keep the data correct and consistent:
• The domain constraint states that the value of a particular attribute

always comes from the same (specified) domain

• The entity integrity constraint states that the value of the primary key
must be unique and not null

• The referential integrity constraint states that the value of a foreign key
must match an existing primary key, or be null

• Enterprise constraints specify constraints relating to business rules that
must hold true across multiple attributes or relations

Domain constraints

The domain constraint states each attribute within a relation must be from a
single domain that limits its data to particular set of allowable values

• GPA must be a numeric value between 0-4

• Final grade must be one of {HD, D, C, P, N}

When we define attribute constraints for the logical design we must also
specify:

• Required (not null) if an attribute must ALWAYS hold a value

• Data type (character, numeric, date, Boolean, etc)

• Any default values should also be specified

Entity integrity – primary key

The entity integrity constraint says that
primary key values are unique and
cannot be null

These constraints are automatically enforced when a primary key
is defined a primary key – you don’t have to define them
separately

Choosing a primary key - some
principles:

Uniqueness must be guaranteed

Value is not likely to change

Domain should be big enough for expansion

Key names should be recognisable, e.g. by using –ID

A primary key may be a single attribute
or compound (=composite,
concatenated)

e.g. JOB_HISTORY (StaffID, StartDate, JobNo, EndDate)

Surrogate primary keys

An artificial primary key created to simplify retrieval – e.g. if you have a
very long concatenated candidate key

• Only used for implementation, usually created automatically by the
DBMS

Advantages:

• Short, numeric, fixed – therefore ‘good’ primary key

• Simpler when used as foreign key in another table

Disadvantages:

• Meaningless to user

• May need further queries to retrieve ‘meaningful’ data

• May not be unique when multiple databases are merged

Enterprise constraints

Also known as business rules

• These are additional constraints that apply to the particular system being
modelled

• A student must have passed the prerequisite for a unit before enrolling in
it

• A student must have passed 18 points at Part 1 before enrolling in a Part 2
unit

• End date must be later than start date

• Enterprise constraints usually have to be implemented in the application or
using code in the DBMS

• Must be documented

Enforcing referential integrity

Referential integrity constraint

• The referential integrity constraint says that the value of a foreign
key must reference an existing primary key, or be totally null

• Referential integrity can be violated in a number of ways: it is
possible any time there is an:

• Insertion

• Deletion

• Update

of a record in the database

• So we have to document what must happen in each case in order to
preserve referential integrity and enforce this solution

Choosing referential actions (‘foreign key rules’)

The foreign key constraint clause in the CREATE TABLE statement
specifies what should happen when changes are made in that table or
the one that it references:

• INSERT – a record in the ‘child’ table (the one with the FK)

• UPDATE, DELETE – a record in the ‘parent’ table (the one with the PK)

Violating referential integrity 1 -INSERT

Inserting a new record with a foreign key that doesn't reference a
primary key in another table

- Solution: Disallow the insert

- If the foreign key is defined in the CREATE TABLE statement, then this
will happen automatically

Violating referential integrity 2 - DELETE

Deleting a record whose primary key is referenced by records in other tables

- Solution:

•Disallow the delete

on delete no action

•or Cascade the delete to delete all referencing records in the other table
as well

on delete cascade

•or Set foreign keys to another, allowable value (such as null or the
default), then permit the delete

on delete set null

Violating referential integrity 3 -
UPDATE

Updating the primary key of a record that is referenced by
records in other tables

- Solution:

• Disallow the update

on update no action (NOT IN oracle)

• or Cascade the update to all FKs - change their values to
match the new primary key

on update cascade

•or Set foreign keys to another, allowable value (such as null or
the default), then permit the update

on update set null

Choosing referential actions (‘foreign
key rules’)

What to choose when??

The action that should be chosen to preserve referential integrity
in any given case depends on the particular business context, but
we can identify some rules of thumb (next)

Choosing referential actions: INSERT

Inserts to the N-side (child) table that would violate
referential integrity:

- Disallow the insert, as discussed

Choosing referential actions
UPDATE

Updates to the primary key of the 1-side (parent) table:

- Normally would cascade the update to the foreign key in the
child table

- If the PK is a system-generated surrogate, would normally
disallow any changes

Choosing referential actions DELETE

Deletes from the 1-side (parent) table:
- If the N-side is from a weak entity or an associative entity

(existence dependent)
- Can usually cascade the delete, unless there are business reasons for

disallowing it

Choosing referential actions DELETE

Deletes from the 1-side (parent) table:
- If the 1-side is mandatory to the N-side

- disallow delete if there are child records

- or reassign child records to another parent then allow the delete

Choosing referential actions DELETE

Deletes from the 1-side (parent) table:
- If the 1-side is optional to the N-side

- set foreign keys in child records to null then allow the delete

- or reassign child records to another parent then allow the delete

Enforcing cardinality

Enforcing cardinality constraints

How do we ensure that the information about cardinality in the
ERD is implemented in the database?

• We need to consider both maximum cardinality and minimum
cardinality, for both entities involved in the relationship

Enforcing maximum cardinality

Maximum cardinality is either is either 1 or many, and is
enforced by the foreign key:

• If maximum cardinality is many, all this requires is that the
foreign key is placed in the ‘many’ side table, as usual

• If the maximum cardinality is 1, the foreign key is set to be
unique

Enforcing minimum cardinality

The textbook goes through this in some detail, as it can become quite complex;
however it can be summarised as:

If minimum cardinality is 0 no problem – nothing extra to do

If minimum cardinality is 1 (mandatory), then:

• If the parent is mandatory to the child, making the foreign key NOT NULL ensures
every child record must have a parent

• If the child is mandatory to the parent, must add parent + child records in the
same transaction via the application to ensure every parent has at least one child
record. Must also ensure last child of a parent is not deleted

• If the parent and child are mandatory to each other … it gets very tricky because
‘circular’

Take-aways…

• The logical design needs to document all the integrity constraints required
both for the system being modelled and the relational model itself:

• Entity integrity, referential integrity, domain constraints and
enterprise constraints

• We also need to specify how referential integrity is to be maintained when
data in the database is changed through insert, delete, and update

• These are known as referential actions or foreign key rules and must
be documented

• We must also consider how to ensure minimum and maximum cardinality
specifications

Topic 06: Part 04 - Confirm Logical Design

Review with users

Check for future growth

Merge local logical models into global model

Review logical data model with user

• ERD and schema should be complete and documented

• We need to get the model and supporting documentation and go
through it with the user

Check for future growth

• It’s vital to develop a model that is extensible in case there are
future changes in the requirements

• Ask: Can we predict any potential changes that may arise

• Our logical model must be able to deal with the potential
changes

• e.g. Number of teaching periods at Murdoch has increased
significantly over the years (trimesters, winter, etc)

- what would be the best way to model teaching period??

Merge local data models to create
global model

• If we have developed separate logical data models for different
user views, they must be merged into a single global model

• The activities in this step include:

• Merge local logical data models into global model

• Validate global logical data model

• Review global logical data model with users.

Merge local logical data models into global model

Tasks typically include:

(1) Review the names and contents of entities/relations and their candidate keys.

(2) Review the names and contents of relationships/foreign keys.

(3) Merge entities/relations from the local data models

(4) Include (without merging) entities/relations unique to each local data model

(5) Merge relationships/foreign keys from the local data models.

(6) Include (without merging) relationships/foreign keys unique to each local data model.

(7) Check for missing entities/relations and relationships/foreign keys.

(8) Check foreign keys.

(9) Check Integrity Constraints.

(10) Draw the global ER diagram

(11) Update the documentation.

Take-aways…

• Before going on, it’s important to review the logical design:

• Confirm with users

• Check for flexibility and future growth

• Merge local models into a global model if required

• 6. Document the logical design in the data dictionary

Topic 06: Part 05 - Document the logical design in the data dictionary

Documenting the conceptual and logical
database design process

• Both the relational schema and the ERD must have appropriate and
complete documentation attached with it

• A data dictionary of all aspects of the system should be maintained at
all stages as the design is developed

• can be done by hand (e.g. in a series of Word tables) or using a
design/development tool (e.g. ERWin; Oracle SQL Developer)

• The data dictionary should be made when you design a database and
the data dictionary should be updated regularly for people who will
be using the database

The Data Dictionary

Formats for the data dictionary vary, but should normally include the following:

• The ERD, including all entities, attributes, relationships, cardinality, primary keys and
foreign keys (if shown)

• Relation schemas derived from ERD, including attributes, primary keys and foreign keys

• Attributes - attribute name, alias, owner table, description, data type and size,
required?, derived (and how computed)? domain (allowable values), format, input
mask ('picture')

• Primary key and any alternate key(s) for each table

• Referential actions (foreign key rules) for each foreign key

• Any additional constraints such as cardinality or enterprise constraints that have not
already been documented

Data dictionary examples for attribute
definitions using format in textbook

Column characteristics for the Employment table

Column Name Type Key NULL Status Remarks

DateJoined DATE Primary NOT NULL (BETWEEN 01-JAN-1900 and 01-

JAN-2999)

AlumID NUMBER(8) Primary, Foreign NOT NULL

EmployerName VARCHAR(35) No NOT NULL

JobTitle VARCHAR(35) No NOT NULL

DateLeft DATE No NULL (DateLeft > DateJoined)

(BETWEEN 01-JAN-1900 and 01-

JAN-2999)

Salary NUMBER(8,2) No NOT NULL (Amount > 0)

(student examples from last year’s assignment)

Take-aways…

• A data dictionary is an essential part of documenting the logical
design, and provides the basis for the subsequent physical design and
implementation

• The exact format is determined by organisational practice or the
software tool being used, but will include at least:

• The complete ERD

• The relational schema

• Description of each table and each attribute in each table

• Any business rules not already captured

Topic 06: Part 06 - Conclusion

Topic learning outcomes revisited

After completing this topic you should be able to:

• Describe the activities in logical database design

• Convert an ERD to a relational schema in 3NF

• Validate a relational schema against the business transactions it is required to support

• Identify and document all integrity constraints for the logical model: required data,
attribute domain constraints, entity integrity, referential integrity and enterprise
constraints

• Define appropriate referential actions (‘foreign key rules’) to ensure that referential
integrity is maintained when the database is updated, inserted or deleted

• Document the logical database design in a data dictionary

What’s next?

Next time, we complete our set of topics on the database design process, by looking at
physical design – where we define exactly how we will implement the database in the

target DBMS. In the labs, we’ll return to Oracle to look in more detail at the decisions that
need to be made and implemented during the physical database design phase.

